ERG.\NEO

L’AVENIR EST FAIT D’AUDACE

Cahier des charges mission UX/UI et developpement

Argument Theory

16 décembre 2019

01 44 23 2150 | connect@erganeo.com
37 rue de Lyon - 75012 Paris CS 32707
RCS de Paris 539 868 224

ERG.\NEO

L’AVENIR EST FAIT D’AUDACE

Sommaire

1. A propos d’Argument Theory
2. Eléments généraux

3. Lot1 UX/UI

4. Lot 2 Développement technique

5. Livrables attendus

0144 23 2150 | connect@erganeo.com
37 rue de Lyon - 75012 Paris CS 32707
RCS de Paris 539 868 224

1. A propos d’Argument Theory

1.1 Ce que nous faisons

Argument Theory met a la disposition de ses clients sa plateforme d’Intelligence
Artificielle, fondée sur l'argumentation computationnelle, pour résoudre des
problemes de décisions complexes et difficiles. Elle fournit une aide
décisionnelle importante et éventuellement des solutions entiérement
automatisées quand cela est nécessaire, en toute transparence et justification.
Nous pouvons encoder rapidement et efficacement les politiques décisionnelles
de nos clients dans différents domaines (par exemple la gestion automatisée
de conformité, la gestion automatisée d’acces aux données, le trading,
’évaluation et la mitigation automatique de risques) et fournir les réponses
dont ils ont besoin tout en expliquant pourquoi ces décisions sont prises et sur
quelles données elles sont fondées. Cela peut alors aider le client a exploiter
davantage les résultats.

1.2 Notre technologie

Argument Theory est une plateforme SaaS d’Intelligence Artificielle (1A). Elle
permet la prise en compte des exigences de problemes de décisions impliquant
de nombreux facteurs, éventuellement changeants et incomplets, et affectant
de maniere complexe et difficile la solution parmi une multitude de choix
décisionnels. Notre approche repose sur 'argumentation computationnelle, une
technologie qui permet a un systeme d’IA de disposer de capacités de
raisonnement et de comportement similaires a celles d’un humain. Notre
plateforme a en particulier la capacité d’évaluer les arguments pour ou contre
une décision et de fournir des explications sur les raisons et les hypotheses a
appui de cette décision. En outre, la technologie permet une adaptation
modulaire et aisée de ses solutions et systémes a des exigences nouvelles et
changeantes.

Comment se prend une décision en argumentation computationnelle :

DECISION

Antithese

Attaque
__ ¥
Supportent 2 : iﬁLSupportent
Arguments Arguments

Epreuve de Force

Dans le détail :

Prouve rThése Am‘ﬁthéseﬁ Prouve

Attaque

Argument A Argument B
L
Attaque
- 5°“t'e"tt a tSoutient
c -
: MR e——
= £
= E
sy - Attaque ™= 57
E E Soutientt Soutient x 8
= “ o
= u
3 Ex
’g L J 23
< T
Arguments A, Ar Ay \.-Arguments B, By By

Epreuve de Force

~1 / /4 4
2. Elements generaux
2.1 Objet du marché

2.1.1 Allotissement

Le présent marché comporte deux lots :
> Lot 1: réalisation UX / Ul

> Lot 2 : réalisation de la plateforme SaaS contenant Uapplicatif
Argument Theory

Lot 1:
o Réalisation des écrans UX illustrant les parcours décrits dans le présent
cahier des charges
o Reéalisation de l’'Ul des différents écrans UX sur la base de lidentité
graphique Argument Theory en cours de réalisation (marché séparé)
o Réalisation du CSS/HTML associé aux écrans Ul

o Rédaction des spécifications fonctionnelles détaillées sur la base des
éléments techniques fournis dans le présent cahier des charges
o Développement de la plateforme SaaS accueillant la solution Argument

Theory
o Offre de maintenance corrective et évolutive (périmetre, garanties
associées)
Annexes

Sont transmis aux candidats les annexes suivantes :
> Annexe 1: AT_Gorgias_API_Doc, fichier PDF
> Annexe 2 : AT_Authoring_System, fichier PPTX

2.1.2 Type de marché

Marché de services a procédure adaptée selon l'article 30 du Décret n° 2016-
360 du 25 mars 2016 relatif aux marchés publics.

2.1.3 Acheteur

SATT Erganeo

Société par actions simplifiée au capital de 1 000 000 euros.
Siege social : 37 rue de Lyon, CS 32707, 75012 Paris.

RCS : Paris B 539 868 224

2.1.4 Planning

La présente consultation est envoyée aux candidats par Erganeo le 12
décembre 2019.

La date limite de réception des offres est le jeudi 09 janvier 2020 a 12h.
Le choix des candidats se fera le mardi 14 janvier 2020 a 12h.

La réalisation des lots 1 et 2 est prévue dans un planning de 4 mois (avril
2020). Erganeo et Argument Theory sont a ’écoute des candidats quant a
leurs propositions en matiere de planning.

2.1.5 Contacts

Pour les aspects fonctionnels et technigues :

Pavlos MORAITIS

Téléphone : 01 76 53 02 85 / 06 83 22 20 66

Mail : pavlos@mi.parisdescartes.fr, pavlos@argument-theory.com

Pour les aspects administratifs :
Estelle VIDAL

Portable : 07 61 86 77 56

Mail : estelle.vidal@erganeo.com

2.1.6 Propriété intellectuelle

Aux termes des dispositions de code de propriété intellectuelle, Erganeo sera
titulaire de ’ensemble des droits de propriété intellectuelle sur les productions
réalisées dans le cadre de cette prestation, le co-contractant cédant, en
contrepartie de la rémunération percue au titre de la prestation, a Erganeo,
tous droits y relatifs, et notamment sans que ceci soit limitatif les droits de
reproduction, de représentation, d’adaptation, de traduction, de modification.
Le co-contractant garantit que tous les contenus nécessaires a la réalisation
des Productions définis dans le présent document, ne contiennent aucun
élément qui puisse porter atteinte aux droits d’un tiers ou étre constitutif de
contrefagon ou d’un acte de concurrence déloyale ou parasitaire. En outre, il
garantit détenir ’ensemble des droits et autorisations nécessaires sur lesdits
éléments. Le co-contractant ne peut en aucun cas faire usage de ces

Productions que ce soit a titre gratuit ou onéreux, sauf apres autorisation écrite
d’Erganeo. Le cas échéant, les images proposées par le co-contractant devront
étre libres de droits. Le co-contractant devra vérifier avant toute utilisation
d’image que les droits nécessaires a la bonne exploitation de l'image sont
acquittés aupres de son auteur et obtenir, le cas échéant les autorisations de
diffusion.

Il est rappelé aux candidats qu’ils sont liés a Erganeo par un NDA et qu’il leur
est strictement interdit de mentionner cette consultation ainsi que son
contenu.

2.2 Fonctionnement de l’application

Gorgias propose, via web, des systemes d’argumentation computationnelle que
les utilisateurs finaux peuvent exploiter afin d’obtenir des réponses déduites par
les conditions définies en amont et les parameétres personnalisés qui peuvent
étre saisis directement par les utilisateurs finaux. On appelle systeme un
ensemble de parametres qui, exécutés, amenent a la production d’une réponse.

Gorgias est le moteur d’intelligence artificielle développé par AT sur lequel
reposent toutes les mises en ceuvre concretes présentées dans ce cahier des
charges.

Actuellement une couche applicative web permet Uexploitation de Gorgias pour
construite des scénarii ainsi que de consulter le résultat de leur exécution.

Au sein de la plateforme, linterface de création de systemes, dite interface
d’authoring, permettra de créer des scenarios ou d’accéder aux scénarios
existants pour les exécuter et les tester. L’interface de création de systeme
permet également la création de la table des scenarii, grace a elle, les
développeurs de systemes ont la capacité de construire de maniere simple et
efficace la table de scenarii.

A terme, la nouvelle plateforme développée a lissue de cette consultation
comprendra également des dashboards qui permettront la consultation du
display des résultats du systeme de création de scenarii (authoring system) et
vérifier, ainsi, son fonctionnement. Ces écrans de contréle font partie de la
consultation. Les écrans qui permettront d’exploiter les systémes fondés sur
Gorgias pour les utilisateurs finaux dans le cadre des systemes de trading, ou de
diagnostic médical par exemple ne font pas, eux, partie de la consultation.

Une APl permet d’envoyer directement des requétes a Gorgias et de recevoir les
résultats de celles-ci. Cette API est associée a un portail de documentation.

Pour découvrir la solution, les candidats peuvent consulter les vidéos suivantes :

https://youtu.be/QZVns7Q8BYS8

https://voutu.be/wAvdYIl-ImJs

https://youtu.be/QZVns7Q8BY8
https://youtu.be/wAvdYI-ImJs

Ils peuvent également créer un compte sur la plateforme de démonstration,
accessible a cette adresse :

http://147.27.6.99:8080/

La plateforme sera mise a disposition des utilisateurs finaux :

> Au sein d’applications tierces, intégrées en API,

> Via linterface de dashboard pour que les utilisateurs finaux puissent

exécuter les systemes et consulter les résultats. Ces interfaces
pourront étre développées sur la base de modeles clés en main, dans
des domaines pour lesquels l’équipe AT dispose d’ores et déja de
modeéles, de scenario, etc., ou bien en mode custom, en créer ex nihilo
des systemes et requétes pour des cas d’usage particuliers.

Les utilisateurs qualifiés pourront exploiter Gorgias de deux fagons :

>

En interrogeant UAPI (il s’agira ici d’une APl demandant un certain
niveau de connaissance en informatique)

En exploitant linterface d’authoring. On aura ici deux grands groupes
d’utilisateurs :

> Des développeurs, informaticiens, capables d’utiliser Uinterface
pour construire leurs propres systéemes avec l’assistance d’AT (si
besoin),

> Les équipes Argument Theory qui utiliseront Uinterface pour
construire des systemes a destination de leurs clients.

Un module de paiement sera également intégré a la nouvelle plateforme.

Techniguement il fera partie intégrante de la plateforme SaaS. Il sera
consultable par les utilisateurs finaux depuis le site corporate Gorgias qui
présentera les différentes options d’abonnement, leurs coordonnées de
facturations et l’état actuel de leur formule d’acces en cours. Il est demandé
aux candidats de chiffrer :

> Pour le lot UX/UI, la conception des écrans de paiement et de

consultation de son compte.

Pour le lot technique, le développement du module de paiement ainsi
qu’un module associé de comptage des requétes pour contrble de
l'usage. Le modele précis d’abonnement n’est pas encore arrété, tout
comme le périmetre exact du comptage et des éventuels paliers de
facturation ne sont pas arrétés. Toutefois, il importe que le futur
systeme soit en mesure de présenter un étant complet de la
consommation de ressources associés a chaque compte utilisateurs
(instances, temps de CPU, espace disque, bande passante, etc.)

http://147.27.6.99:8080/

Plus précisément, voici comment fonctionne le développement de la
connaissance utilisée par Gorgias dans son raisonnement pour lesquels de 'UX/UI
est attendue :

Il sera demandé au prestataire de respecter les régles de l'art en matiere d’UX
design. Le candidat devra démontrer sa capacité a réaliser des interfaces
innovantes, au service de lutilisateur final, non seulement en respectant les
regles de l'art mais également en fournissant des références concretes dans la
création ou la refonte d’interfaces au-dela des sites web.

L’équipe projet jugera les compétences des candidats aux regards des grands
principes de 'UX design. Nous donnons ici quelques axes généraux pour guider
la réponse des candidats sans pour autant étre exhaustifs :
> 1. L’affordance des composants
. Le feedback a l'utilisateur
. Les limites des actions de l'utilisateur
. La cohérence et les standards
Le choix des mots

o oA W N

. La fluidité des actions de lutilisateur

VvV V. V V V V

7. Fournir des sorties de secours a lutilisateur

Nous détaillons ici les principaux personae et cas d’usage de lapplication,
attendant des candidats qu’ils proposent U'UX relative a chacun des parcours
ainsi que l’Ul, déclinée de lidentité Argument Theory.

Les candidats devront justifier, dans leur offre, d’une expertise tant méthodologie
que pratique dans la création d’expériences de navigation et d’usage efficaces
dans le cadre d’application complexes.

3.1 Personae

Trois profils d’utilisateurs sont identifiés :

> Equipe Argument Theory,
> Développeur tiers

> Utilisateur final

Les utilisateurs Equipe Argument Theory et Développeur tiers utilisent Uinterface
d’authoring ainsi que Uinterface dite Dashboard. Les utilisateurs finaux sont donc,
les développeurs qui consultent le résultat de leurs travaux mais également des
utilisateurs qui, eux, ne consultent que les résultats sans étre en mesure de

développer des scenarios.

Les développeurs utilisant UAPI pour requéter l'application et les utilisateurs
finaux consultant les résultats ne sont pas ici concernés dans la mesure ou
LCUX/UI qu’ils exploitent ne reléve pas d’Argument Theory.

De méme, les dashboards ne sont pas compris dans cette consultation.
3.2 Parcours

Les parcours utilisateurs décrits ici sont volontairement simplifiés pour laisser
aux candidats la liberté d’exprimer leurs ambitions et leur vision du systeme
d’authoring. Il est demandé aux candidats de présenter dans leur offre des
parcours cohérents de bout en bout. S’ils ont des questions quant a l'utilisation
de linterface d’authoring, ’équipe AT et Erganeo est disponible pour répondre a
leurs questions.

Parcours 1: utilisateur AT ou développeur créant son propre systéme

> L’utilisateur accede a la plateforme et s’identifie
> Il crée un projet pour lequel il souhaite créer un nouveau systeme

> |l accede a l’écran d’authoring et démarre la création d’un nouveau
systeme

> L’utilisateur passe chacune des étapes en utilisant les écrans de
configuration

> |’utilisateur sauvegarde son systeme

> L’utilisateur utilise le systéme et lance des requétes pour le tester.

Parcours 2 : Développeur venant éditer un systéme existant

> L’utilisateur accede a la plateforme et s’identifie

> |l accede a son tableau de bord présentant la liste des systemes
auxquels il a acces

> |l accede a un systeme en particulier et met a jour la connaissance du
systeme (ajout d’options, de croyances, de préférences, ...).

> |l exécute le systeme et consulte le résultat

Parcours 3 : Instanciation par I’équipe AT d’un systéme générique pour un
client particulier
> L’utilisateur acces la plateforme et s’identifie

> |l accéde a son tableau de bord et sélectionne dans une liste le
systeme générique qu’il souhaite instancier.

> |l donne une identité au systeme (code unique d’identification du client)

> |l personnalise / adapte la connaissance du systeme selon les

exigences du client

> |l exécute le systeme et consulte le résultat

Dans ce lot il est demandé aux candidats de construire et de soumettre une offre pour
le développement technique de l’environnement mettant a disposition et hébergeant
Uapplicatif Gorgias en mode Saas.

Schéma 3 : schéma général de fonctionnement technique de Gorgias

Les candidats sont libres de proposer des évolutions de cette architecture, voire de
proposer leurs propres solutions sur la base des services demandés.

4.1 General Description

This entire structure represented in the above diagram constitutes the “Software
as a Service” part of Argument Theory. In case a customer requires having the
engine internally, it is enough to deploy a sub-architecture (load balancer and
set of Docker containers).

4.2 The main web server/router

Is in charge of:

> dealing with client authentication (through access to the client
database)

> Creation of container according to customer configuration information
(Retrieved from the CLIENT database, itself a Docker image). One set of
identical containers per login below a load balancer. This is to deal
with requests load from some customers. The load balancer will
balance the load amongst Docker container. Therefor Docker containers
below the load balancer should be created dynamically according to
the load.

> For premium customers we may need to route client communication to
the dedicated load balancer (in and out). Since one set of containers is
dedicated to a customer, we need to make use at this level of sticky
sessions.

4.3 Client Docker Image (instantiated as multiple containers for load

balancing)

Each image contains a web server with a REST APl that communicates with a
native Java API, which in turns dialogs with the PROLOG engine using Gorgias and
the theory. Here we need to explain the way it will work:

o Upon customer login (at the main Web Server level), a set of Docker
containers (from the Docker image) are instantiated with the relevant
Theory.

o The client will be asserting background knowledge (fully instantiated
facts and beliefs) to all these containers at the same time.

o The client will then send queries to the system (queries will be load
balanced to the most available container, but since they will all contain
the same knowledge, it will return an accurate answer).

o Once all the queries relating to this specific background knowledge
have been performed, the background knowledge must be flushed.

o And so on...

Below a small specification of the APIs:

4.4 Java API (indicative — subject to review)

Void init(ld clientld): this will init the containers for a given client. It will
retrieve from the database according to the client id all the relevant
information:

> Theory location (that will be automatically loaded)

> Vocabulary (in case a translation must be made between the
background knowledge pairs (name, value) received from the client and
the way it is encoded in the Theory. In the form (input_name,
predicate_name, arity) (arity, integer specifying the amount of
arguments).

Id OpenSession() : once called a new session cannot be opened until
CloseSession is called.

During a session background knowledge can be asserted to the Prolog engine.
Then Gorgias can be queried as many times as necessary. But knowledge
asserted cannot be changed.

For that CloseSession() must be called in order to retract all information
asserted. Then a new session with new knowledge can be started.

void CloseSession(ld sessionld) : retract all asserted information (flush all
background knowledge).

boolean ReloadTheory(String filename) : re-loads a theory (making sure the
previous one is unloaded with unload_file JPL predicate). This is for dynamic

change of theory. This is for future use (in case theories can be edited online
and reloaded dynamically).

AssertKnowledge(String[] elements, String[] values, Boolean translation):
assert(element(value)) for all pairs (elements, value). Used to assert
background knowledge before making a query to Gorgias. It might need a
translation according to the vocabulary loaded during initialization.

This method will assert to all available containers below the load balancer.
WARNING: in this case CloseSession will need to use the “abolish” predicate
in order to flush the knowledge.

AssertKnowledge(String[] elements, String[] values): Creates a knowledge file
before loading this file to the Prolog engine. Used to assert background
knowledge before making a query to Gorgias.

This method will assert to all available containers below the load balancer.
WARNING: in this case CloseSession will need to use the “unload file”
predicate in order to flush the knowledge.

List<Map<String, Term>> Query (string query_name, string[] params, string[]
values, int maxAnswers, int maxMilliseconds) :

Will send a query to Gorgias in the form:
rove([query name(parami(valueil), param2(value2)....... EXPL

Returns null if the result is false. Else returns the explanation in the form of a
List of Maps. Each element of the list is an answer (Map of tuples <variable
name, value> representing the answer). The List will not contain more than
maxAnswers entries (therefore if only one answer is needed, there is no need
to query all the possible answers). If maxAnswers is set to NOMAX (say -1), then
returns all the possible answers. Similarly, maxMilliseconds can define a
maximum time to wait for answers. The system returns the answers found
within the time limit set. It can be cumulative with maxAnswers. Used to query
Gorgias for a particular grounded argumentative theory that corresponds to the
background knowledge of a specific instance of the problem to solve (e.g.
evaluate a risk, decide about a mitigation factor). Therefore AssertkKnowledge
must be called before. Explanation could also provide which is the trace of the
reasoning (i.e. all the grounded instances of the different (levels of) rules that
have been triggered for proving the query).

This call will be directed to the most available container below the load
balancer.

String[1[] RequestHistory(ld sessionld) : does not make call to Gorgias, but
directly to the database (audit trail). For a given session id, will return all
database rows with the given session/d. This is used for historical search
(audit trail).

This call will be directed to the most available container below the load
balancer.

String[1[] RequestHistory(Date from, Date to): same as above, but returns all
activity in a given date frame (several records).

This call will be directed to the most available container below the load
balancer.

So the java api is the low level communication channel to Gorgias and the
audit trail database. It enables to assert knowledge to Gorgias, query Gorgias
and make calls to the audit trail database. It needs to be organized in
sessions to deal with the change in the environment between two queries
done to Gorgias.

REST API (makes direct calls to the java api):

Put: openSession: direct call to java api (modification of system status)

Put: closeSession: direct call to java api (modification of system status)

Put: reloadTheory: direct call to java api (modification of system status)

Post: postKnowledge : json set of information in the request body. Makes
direct call to AssertKnowledge(String[] elements, String[] values) of the java
api. Addition of information.

Get: Query : direct call to java api (retrieval of information). Returns json format
of the list. JSON really adapted for this.

Get: RequestHistory: @requestparam, returns json in respond body. Call to the
java api to retrieve information directly from the audit trail database.

4.5 Audit Trail Database Structure

Storing all api calls to the database is crucial in order to be able to
retroactively justify decisions made by Gorgias to the customer.

This database will be the main data source for creating reports to the
customer.

This database will be the main data source for the billing (on a per request
basis).

There are several ways to design the database, but the simplest would be to
have one table with 4 fields:

(sessionld, date-time, action, outcomes)

Outcome would be the query result in the most complex case (all other cases,
outcome is not really relevant)=> a json string

Therefore:

OpenSession will create an entry with for example (34655hjds4656, 28/04/2019
12:01:45 cet, session opened, empty)

CloseSession will create an entry with for example (34655hjds4656, 28/04/2019
12:12:03 cet, session closed, empty)

Query will create an entry with for example (34655hjds4656, 28/04/2019
12:12:03 cet, query_name(a=45, b=56), false)

4.6 Customer Database

All information that is needed to identify the customer and detail its
configuration.

4.7 Payment

A billing module had to be implemented in the new platform.

This billing module needs to have the following functionalities:

vV V V V V

Allow payment with the main credit cards on the market

Compatibility with the main browsers

Client account management (personal data, payment history, status, ...)
Bills generation

Data consumption monitoring (CPU, bandwidth, disk space, ...)

Please see also, appendix 1 Gorgias APl Doc PDF file fur forther information
about Gorgias API.

5.1 Lot 1 — UX/UI

5.1.1 Liste des livrables attendus

Il est attendu des candidats qu’ils fournissent dans leur réponse les éléments

suivants :
>

Références sur des projets similaires (création d’expériences
utilisateurs dans des environnements digitaux innovants)

Equipe projet dédiée

UX : Wireframe High Fidelity des différents parcours décrits dans le

présenta cahier des charges ainsi que des écrans de paiement et de
gestion de son compte utilisateur

Ul : Maquette de l’'un de ces parcours.

Liste compléte des templates prévus pour livraison. Il est attendu des
livraisons au format CSS / HTML pour intégration dans le futur site de
la plateforme par le prestataire en charge du développement technique
de celle-ci.

Organisation et gouvernance

Mode de collaboration et de discussion autour des travaux tout au long
de la vie du projet

Planning prévisionnel
Budget

Engagement quant a Uutilisation privilégiée d’images libres de droits. Si
des achats sont a prévoir, il est demandé aux candidats de privilégier
Adobe Photostock.

Engagement quant a la transmission de toutes les sources associées
aux livrables projet (fichiers sources, iconographie, pictogrammes, ...)

5.1.2 Critéres de sélection

Les criteres de sélection des offres sont les suivants :

Expérience en design / fonctionnel / SaaS

Une premiere expérience dans le développement d’interfaces dans le
monde de UIA ou plateformes de services en ligne sera un plus.

Qualité des propositions UX et originalité des propositions faites par les
candidats pour enrichir ’expérience utilisateur

Qualité de la mise en ceuvre de l'identité de marque Argument Theory
au sein de la plateforme développée

Respect du planning et de l’enveloppe budgétaire

Adéquation de l'interface avec les besoins de l'utilisateur (en fonction
des profils et des différents use cases + intégration de différentes
instances Gorgias)

Expérience sur design partie collaboration (par exemple pour création
d'une requéte en plusieurs personnes) et logique marketplace (pour
partage des différentes "bibliotheques" d'arguments et d'options déja
créeés

Les modalités de réponse au présent cahier des charges englobent notamment :

>
>

la possibilité de se positionner sur un ou plusieurs lots

la possibilité de proposer un lot avec un partenaire, merci de nous le
préciser le cas échéant et de ne pas diffuser le présent cahier des
charges avant qu’'un NDA ne nous ait été retourné signé de leur part (cf
mention 2.1.6 Propriété intellectuelle)

5.2 Lot 2 — Reéalisation de la plateforme Saa$

Il est demandé aux candidats de :

Chiffrer la réalisation de lapplication web d’accés a Gorgias,
Chiffrer le développement de tous les services nécessaires pour 'application

Chiffrer le développement du module de paiement et présenter le colt build /

run d’une telle solution (abonnement aux solutions tierces utilisées pour le

paiement).
Chiffrer ’hébergement de l'application web ainsi que Gorgias.

Fournir une offre de tierce maintenance applicative présentant clairement les
TJM appliqués pour les développements complémentaires ainsi que les GTI et
GTR associées a l'offre d’hébergement

Proposer un PRA en option

Fournir des références concréetes et récentes de réalisation de plateformes
SaaS sur des technologies et solutions équivalentes.

Fournir des références concréetes et récentes dans ’hébergement et la
maintenance de plateformes en mode SaasS.

Fournir un organigramme projet clair et précis quant aux ressources
disponibles et leur situation (ressources internes ou externes a la société)
ainsi qu’un CV détaillé des membres de ’équipe de pilotage et de
développement.

Fournir un planning précis de livraison des différents modules applicatifs.
Fournir un tableau des risques projet.

Fournir une solution d’hébergement située de préférence en France, sinon en
’Union Européenne.

